Neural circuits mediating visual flight control in flies. I. Quantitative comparison of neural and behavioral response characteristics.

نویسندگان

  • K Hausen
  • C Wehrhahn
چکیده

The motion-sensitive horizontal cells in the lobula plate of the fly are assumed to play a key role in the sensory control of yaw torque generated by the flying animal during course-stabilization maneuvers and the fixation of objects. This inference results from comparisons of electrophysiological data obtained from blowflies (Calliphora erythrocephala) and behavioral data obtained mainly from houseflies (Musca domestica) and fruitflies (Drosophila melanogaster). Apart from few exceptions, the compatibility of these physiological and behavioral data has not been critically tested. In the present study, the responses of the equatorial horizontal cell HSE of Calliphora and the yaw torque responses of Calliphora and Musca were recorded under identical visual stimulation with moving periodic gratings. The goal of the experiments was to obtain electrophysiological and behavioral data on Calliphora, on the one hand, and behavioral data on Calliphora and Musca, on the other hand, that allow direct comparisons between the physiological properties of the HSE and the visually induced torque responses in both species. The dependence of the HSE responses and the yaw torque responses on the direction, contrast frequency, and brightness of a moving periodic grating were evaluated quantitatively. The results of the electrophysiological recordings and torque measurements are in close agreement and thus represent strong evidence that the horizontal cells are, in fact, involved in yaw torque control in both species. Measurements of the cellular and behavioral responses as function of the stimulus position in the visual field, however, reveal differences between the spatial sensitivity of the horizontal cells and the sensory input to the motor system.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural circuits mediating visual flight control in flies. II. Separation of two control systems by microsurgical brain lesions.

The role of 2 sets of interneurons in the optic lobes of blowflies in visual course control was studied by means of brain lesions. The first set comprises the cells HS and H2, which respond to global horizontal motion. The second set are the FD-cells, which respond selectively to local horizontal motion. All these cells are output neurons of the third optic ganglion of flies and are thought to ...

متن کامل

The spatial, temporal and contrast properties of expansion and rotation flight optomotor responses in Drosophila.

Fruit flies respond to panoramic retinal patterns of visual expansion with robust steering maneuvers directed away from the focus of expansion to avoid collisions and maintain an upwind flight posture. Panoramic rotation elicits comparatively weak syndirectional steering maneuvers, which also maintain visual stability. Full-field optic flow patterns like expansion and rotation are elicited by d...

متن کامل

Octopaminergic modulation of the visual flight speed regulator of Drosophila.

Recent evidence suggests that flies' sensitivity to large-field optic flow is increased by the release of octopamine during flight. This increase in gain presumably enhances visually mediated behaviors such as the active regulation of forward speed, a process that involves the comparison of a vision-based estimate of velocity with an internal set point. To determine where in the neural circuit ...

متن کامل

Neural Control of Wing Coordination in Flies

At the onset of each flight bout in flies, neural circuits in the CNS must rapidly integrate multimodal sensory stimuli and synchronously engage hinges of the left and right wings for coordinated wing movements. Whereas anatomical and physiological investigations of flight have been conducted on larger flies, molecular genetic studies in Drosophila have helped identify neurons that mediate vari...

متن کامل

Plume-Tracking Behavior of Flying Drosophila Emerges from a Set of Distinct Sensory-Motor Reflexes

BACKGROUND For a fruit fly, locating fermenting fruit where it can feed, find mates, and lay eggs is an essential and difficult task requiring the integration of olfactory and visual cues. Here, we develop an approach to correlate flies' free-flight behavior with their olfactory experience under different wind and visual conditions, yielding new insight into plume tracking based on over 70 hr o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 9 11  شماره 

صفحات  -

تاریخ انتشار 1989